667

Sobre El Tiempo

Proemio

¿Por qué el tiempo avanza? Científicos están desvelando el misterio de la flecha del tiempo

Una nueva investigación, que examina las interacciones entre las neuronas microscópicas de las salamandras, arroja nuevos avances al misterio de la "flecha del tiempo".
Los investigadores exploraron cómo la flecha del tiempo podía descomponerse observando partes específicas de un sistema y las interacciones entre ellas.
 Pocas cosas son tan obvias, por decirlo de alguna manera, o universales de nuestra experiencia de la vida como el paso del tiempo. Por lo que quizás muchos no nos detengamos a pensar sobre el flujo del tiempo del pasado al futuro. No obstante, desde el punto de vista científico el tema es de relevancia, y la física que explica por qué el tiempo avanza, lo que se conoce también como "flecha del tiempo", sigue siendo un gran misterio.
¿Qué es entonces el tiempo y por qué lo experimentamos como algo que tiene una dirección, con un pasado y un futuro? En un nuevo estudio, científicos de la Universidad de la Ciudad de Nueva York (CUNY), en Estados Unidos, con el fin de comprender el flujo del tiempo que experimentamos en la vida, han desglosado esta "flecha del tiempo" hasta un nivel físico microscópico.
La tendencia del universo al desorden nos da la experiencia de que el tiempo fluye
La flecha del tiempo surge fundamentalmente de la segunda ley de la termodinámica: el principio de que las disposiciones microscópicas de los sistemas físicos tienden a aumentar su aleatoriedad, pasando del orden al desorden, un proceso conocido como entropía, según un comunicado de prensa del CUNY.
Cuanto más desordenado se vuelve un sistema, más difícil le resulta encontrar el camino de vuelta a un estado ordenado, y más fuerte es la flecha del tiempo. En resumen, según el comunicado, la tendencia del universo al desorden es la razón fundamental por la que experimentamos que el tiempo fluye en una dirección.
"Todo lo que percibimos como diferencia entre el pasado y el futuro se deriva fundamentalmente de ese principio sobre el universo", dijo Christopher Lynn, autor principal del estudio. Lynn dijo que su motivación para el estudio era "comprender cómo las flechas del tiempo que vemos en la vida" encajan en esta idea más amplia de entropía a escala de todo el universo. 
Análisis de la retina de una salamandra a nivel microscópico
Lynn y sus colegas del Centro de Postgrado de la Universidad de Nueva York y de Princeton se propusieron así estudiar la flecha del tiempo analizando la retina de una salamandra a nivel microscópico para examinar las interacciones entre las neuronas de los anfibios en respuesta a la visualización de una película y ver si el movimiento del tiempo –invisible a simple vista– puede verse.
"Las dos preguntas que se planteaba nuestro equipo eran: si observamos un sistema concreto, ¿seremos capaces de cuantificar la fuerza de su flecha del tiempo, y seremos capaces de ordenar cómo surge desde la microescala, donde interactúan las células y las neuronas, hasta el sistema completo?", afirmó Lynn. "Nuestros descubrimientos proporcionan el primer paso hacia la comprensión de cómo la flecha del tiempo que experimentamos en la vida diaria emerge de estos detalles más microscópicos", agregó.
Según los científicos, que publicaron su investigación en la revista Physical Review Letters, los resultados podrían tener importantes implicaciones en diversas disciplinas, como la física, la neurociencia y la biología.
El experimento: descomponer la flecha del tiempo
Para empezar a responder a las preguntas –cuantificar la fuerza de la flecha del tiempo, y ver cómo surge, además determinar si podían detectar signos de "irreversibilidad local"– los investigadores exploraron cómo la flecha del tiempo podía descomponerse observando partes específicas de un sistema y las interacciones entre ellas.
Según el comunicado, las partes, por ejemplo, podrían ser las neuronas que funcionan dentro de una retina. Observando un solo momento, demostraron que la flecha del tiempo puede descomponerse en diferentes trozos: los producidos por las partes que trabajan individualmente, en parejas, en tríos o en configuraciones más complicadas.
Armados con esta forma de descomponer la flecha del tiempo, Lynn y sus colegas analizaron otro estudio de 2015 en el que los investigadores hicieron que las salamandras vieran dos películas diferentes. En una de las películas, se retrataba una escena de peces nadando con toda la complejidad de las escenas que se encuentran en la naturaleza –una clara flecha de tiempo, es decir, si se ve al revés, se vería diferente que si se reproduce hacia delante–, mientras que en otra un único objeto –una barra negra horizontal en el centro de la pantalla– se movía aleatoriamente por la pantalla, y por ende no tenía una flecha de tiempo evidente.
Independientemente de la película que vieran las salamandras, los investigadores descubrieron que la flecha del tiempo surgía de las interacciones simples entre pares de neuronas, no de grupos grandes y complicados. 
De hecho, el equipo observó para su sorpresa una flecha del tiempo más fuerte para las neuronas cuando las salamandras vieron el vídeo con la pantalla gris y la barra negra. En otras palabras, el vídeo sin una flecha del tiempo en su contenido provocó una mayor flecha del tiempo en las neuronas. 
Lynn dijo que este último hallazgo plantea preguntas sobre cómo nuestra percepción interna de la flecha del tiempo se alinea con el mundo externo. "Pensamos ingenuamente que, si el estímulo tiene una flecha del tiempo más fuerte, eso se vería en su retina", dijo Lynn, según cita Vice. "Pero fue lo contrario. Por eso nos sorprendió".
Según el medio estadounidense, citando a Lynn, esto podría deberse a que las salamandras están más acostumbradas a ver algo como la película de los peces, y el procesamiento de la película más artificial requirió mayor energía. Sin embargo, los investigadores no pueden decir con seguridad a qué se debe esto.
"Estos resultados pueden ser de especial interés para los investigadores en neurociencia", dijo Lynn. "Podrían, por ejemplo, conducir a respuestas sobre si la flecha del tiempo funciona de forma diferente en los cerebros que son neuroatípicos", añadió.
Intensidad del pensamiento y la percepción de la flecha del tiempo
Desde un punto de vista macro, la experiencia del paso del tiempo en un cuerpo físico es aún más compleja de lo que parece. En humanos, por ejemplo, algunas investigaciones sugieren, según Lynn, que la percepción de la flecha del tiempo en nuestro cerebro podría estar relacionada con la intensidad del pensamiento, aunque en general el tema sigue siendo un misterio para la ciencia. 
En resumen, y a pesar de las enormes incógnitas que quedan, el presente estudio puede ayudar a científicos en el futuro en cuanto estos pueden utilizar el nuevo enfoque de búsqueda de la irreversibilidad local también en otros contextos, donde se pueden encontrar más interacciones inesperadas para producir el tiempo. 
"La descomposición de Chris de la irreversibilidad local –también conocida como la flecha del tiempo– es un marco elegante y general que puede proporcionar una perspectiva novedosa para explorar muchos sistemas de alta dimensión y sin equilibrio", dijo David Schwab, profesor de Física y Biología en el Centro de Graduados y principal investigador del estudio.
"No solo se aplica a las neuronas", explicó, por su parte, Lynn, según recoge Vice. También aplica "a las bandadas de pájaros o a cualquier cosa en la que interactúen varias cosas, como las poblaciones de bacterias", agregó. 

https://www.dw.com/es/por-qu%C3%A9-el-tiempo-avanza-cient%C3%ADficos-est%C3%A1n-desvelando-el-misterio-de-la-flecha-del-tiempo/a-63109188

 

 

Desarrollo

 

1.
Tiempo
El tiempo es una magnitud física que hace posible ordenar la continuidad de los hechos, dando lugar a un presente, pasado y futuro. La unidad de tiempo seleccionada es el segundo, este último se define como la 86.400 ava parte del día solar medio. La mayoría de las actividades del ser humano están regidas por el tiempo, ya que este nos ayuda a poner en orden nuestro día. Nos indica que deberíamos estar haciendo, o cuando algo va a suceder.
Qué es tiempo
Corresponde a una medida que diferencia en magnitud, el momento en el cual ocurren diversos hechos, es decir, se refiere al intervalo que existe entre un acontecimiento y otro.
Desde el punto de vista etimológico deriva del latín tempus que hace referencia a una medida o extensión.
El término puede adquirir una variedad de definiciones en base al enfoque que se le otorgue, por ejemplo podría referirse al estado del clima en una zona específica o incluso a nivel gramatical en relación a los tiempos verbales o adverbios de tiempo. En este artículo se desarrollaran las de mayor relevancia.
Tiempo (magnitud)
Desde el punto de vista de la física el término hace referencia a una magnitud utilizada para medir la diferencia que existe entre un hecho y otro o la duración de uno en particular, lo cual permite la administración del tiempo, separándolo en pasado, presente y futuro.
En este sentido, está representado por la letra “t” y su unidad de medida es el segundo.
En nuestra vida cotidiana generalmente utilizamos el calendario y el reloj como principales instrumentos para medir el tiempo. Mucho antes de que existieran los relojes la gente confiaba en los sucesos naturales para medir el tiempo. Trabajaban, comían y dormían de acuerdo con la aparición y puesta del sol.
La unidad de tiempo tiene múltiplos y submúltiplos, tales como un día equivale a 24 horas, la hora equivale a 60 minutos, el minuto equivale a 60 segundos, cuando queremos medir el tiempo transcurrido en un año se tiene que una semana equivale a 7 días, el mes equivale a 4 o 5 semanas y a su vez de 28, 29, 30 o 31 días, y el año equivale a 12 meses.
Sistema de tiempo
El sistema utilizado por lo general es el conocido como calendario Gregoriano, el mismo es usado tanto por el sistema internacional como por el sistema anglosajón. Y su función es básicamente establecer los intervalos entre los cuales suceden ciertos acontecimientos.
Segundos
Corresponde a una unidad de medida utilizada por el Sistema Internacional, el Sistema Técnico y el Sistema Cegesimal. 60 segundos equivalen a un minuto, mientras que para formar una hora se necesitan 3600 segundos.
Por otra parte, citado de manera textual el concepto de segundos según el Sistema Internacional de Unidades es “un segundo es igual a 9.192.631.770 períodos de radiación correspondiente a la transición entre los dos niveles hiperfinos del estado fundamental del isótopo 133 del átomo de cesio (133Cs), medidos a 0 K”.
Minutos
En cuestión de tiempo el minuto está comprendido por 60 segundos y a su vez 60 minutos forman una hora, debido a esto se conoce como la sexagésima parte de una hora.
Horas
Conformado por 60 minutos, se corresponde con ser la vigésimo cuarta parte de un día. Desde tiempos remotos las civilizaciones egipcias antiguas dividían los días en 24 horas, 12 de ellas corresponden con la presencia de luz solar, mientras las otras 12 eran nocturnas.
Días
Corresponde al intervalo de tiempo de 24 horas, durante el cual el sol se encuentra en su punto más alto con respecto al horizonte al amanecer, hasta que lo está de nuevo justo antes del anochecer. Proviene del latín “dies” que significa de manera literal día.
Es importante mencionar que también es posible agrupar otras unidades o jugar con ellas, por ejemplo, en el contexto laboral por lo general se maneja el termino «medio tiempo». Los trabajos de medio tiempo, indican que solo se trabaja la mitad de un día, siendo estos empleos muy populares entre jóvenes estudiantes.
Otro caso son las agrupaciones de varios días que se presentan con nombres particulares, como por ejemplo «7 días» que corresponden a lo conocido como una semana o en el caso de 15 días continuos que serían una quincena.
Por otra parte, hoy en día se habla mucho de lo que es la cuarentena, debido a la crisis epidemiológica causada por el COVID-19, en este caso se refiere a la agrupación de 40 días, sin embargo, en pacientes aislados por presentar problemas de salud, no siempre corresponde con este número de días.
Semanas
Corresponde al periodo comprendido por siete días consecutivos, según lo conocido como calendario civil, este periodo inicia en lunes y finaliza el domingo, mientras que en el caso del litúrgico su inicio es el domingo con finalización el día sábado.
Meses
En el conocido calendario Gregoriano se trata de 12 intervalos conformados de manera intercalada por 30 y 31 días, excepto el mes de febrero que dura sólo 28 por motivos de índole religiosos.
Desde el punto de vista de la astronomía, este es el intervalo que tarda la luna en darle la vuelta completa a la tierra. La agrupación de meses también presenta nombres particulares, como es el caso de:
Años
Formado por 12 meses. El origen del término proviene del latín annus. Cada año inicia el primero de enero y finaliza el treinta y uno de diciembre. Al igual que los días y los meses, los años pueden ser agrupados y forman:
Es importante mencionar que también es posible agrupar otras unidades o jugar con ellas, por ejemplo, en el contexto laboral se maneja el termino «medio tiempo». Los trabajos de medio tiempo, indican que solo se labora la mitad de un día, siendo estos empleos muy populares entre jóvenes estudiantes.
Otro caso son las agrupaciones de varios días que se presentan con nombres particulares, como por ejemplo quincena que corresponde al intervalo de 15 días continuos.
Por otra parte, hoy en día se habla mucho de lo que es la cuarentena, debido a la crisis epidemiológica causada por el COVID-19, en este caso se refiere a la agrupación de 40 días.
Línea de tiempo
Corresponde a una representación de manera gráfica sobre acontecimientos relacionados entre sí que pasaron a lo largo de un intervalo específico. Al observar dicha representación las personas estarían siendo una especie de viajeros en el tiempo, reviviendo los procesos en forma cronológica.
Los pasos para realizarla son los siguientes:
  1. Selección de un tema específico.
  2. Determinar cuáles fueron los aspectos más relevantes relacionados al tema.
  3. Elegir cuál medida de tiempo será utilizada, por lo general se establece en años.
  4. Toda la información debe estar estructurada y redactada de forma breve.
  5. En caso de ser horizontal, siempre se inicia de izquierda a derecha y cuando es vertical de arriba hacia abajo.
Un ejemplo sería la línea del tiempo en relación a la historia universal:
Tiempo atmosférico
Se refiere a todos los cambios que ocurren en la atmósfera en las distintas zonas geográficas en intervalos o momentos específicos del día. Estos cambios modifican y crean lo que se conoce como el clima y el estado del tiempo.
En otras palabras, se puede decir que es el estado momentáneo de la atmósfera a los distintos fenómenos meteorológicos que ocurren en un lugar cualquiera; y que se dan a cortos períodos y pueden cambiar de un momento a otro.
En principio el factor que determina el tipo de clima que se presentará es el cambio en la energía solar, sin embargo, otros fenómenos como la presión atmosférica, la temperatura, el viento, la humedad entre otros, son utilizados para determinar ciertas variables del estado del tiempo como la sensación térmica o la presión de vapor.
Entre los fenómenos atmosféricos más comunes se pueden mencionar:
  1. Las precipitaciones.
  2. Los huracanes.
  3. Los tornados.
  4. Los arcoíris.
Pronóstico del tiempo
Para dicho pronóstico se utilizan una serie de instrumentos y equipos especializados con tecnología de tiempos digitales que se encuentran en las estaciones meteorológicas como satélites y computadoras especiales, que permiten predecir de manera eficaz el tiempo de mañana, para ser más precisos esta predicción puede realizarse con 12, 24, 48, 72 o 96 horas de anticipación.
Tiempo gramatical
Se trata de lo conocido como tiempo referencial de una oración, es decir, sitúa o ubica una situación o estado, dentro de esto se incluyen los tiempos verbales, este puede ser a su vez de dos tipos:
Tiempo absoluto
Este en particular se encarga de definir si un hecho ocurrió antes, simultáneamente o posterior a otro, debido a esto se diferencia en tres:
Pasado
Se utiliza para recopilar toda la información con respecto a hechos ocurridos en el pasado y expresarlos en una oración.
Presente
Es usado en ocasiones en las cuales se pretende enunciar acciones que están ocurriendo en la actualidad.
Futuro
Se usa para enunciar todas aquellas acciones, hechos o situaciones que aún no han sucedido.
Tiempo relativo
Estas se utilizan para expresar dos acciones que por lo general ocurrieron antes del enunciado, pero que se nota que una de ellas ocurrió antes que la otra.
Ejemplos
A continuación, se presentan una serie de frases del tiempo gramatical como ejemplo:
Pronóstico del tiempo
 
Para dicho pronóstico se utilizan una serie de instrumentos y equipos especializados con tecnología de tiempos digitales que se encuentran en las estaciones meteorológicas como satélites y computadoras especiales, que permiten predecir de manera eficaz el tiempo de mañana, para ser más precisos esta predicción puede realizarse con 12, 24, 48, 72 o 96 horas de anticipación.
Tiempo gramatical
Se trata de lo conocido como tiempo referencial de una oración, es decir, sitúa o ubica una situación o estado, dentro de esto se incluyen los tiempos verbales, este puede ser a su vez de dos tipos:
Tiempo absoluto
Este en particular se encarga de definir si un hecho ocurrió antes, simultáneamente o posterior a otro, debido a esto se diferencia en tres:
Pasado
Se utiliza para recopilar toda la información con respecto a hechos ocurridos en el pasado y expresarlos en una oración.
Presente
Es usado en ocasiones en las cuales se pretende enunciar acciones que están ocurriendo en la actualidad.
Futuro
Se usa para enunciar todas aquellas acciones, hechos o situaciones que aún no han sucedido.
Tiempo relativo
Estas se utilizan para expresar dos acciones que por lo general ocurrieron antes del enunciado, pero que se nota que una de ellas ocurrió antes que la otra.
Ejemplos
A continuación, se presentan una serie de frases del tiempo gramatical como ejemplo:
Espacio-tiempo
En el contexto de la física, el término espacio-tiempo representa un patrón matemático, que mezcla el espacio y el tiempo como dos conceptos que se encuentran totalmente inherentes. En este prolongado espacio temporal, es donde se desarrollan todos los eventos físicos del universo; esto según la teoría de la relatividad.
Einstein fue quien formuló esta expresión de espacio-tiempo partiendo de su teoría de la relatividad especial, la cual plantea que el tiempo no puede separarse de las tres dimensiones espaciales, sino que como ellas, el tiempo depende del estado del movimiento del observador.
Por naturaleza son dos observadores los que medirán tiempos distintos, para el intervalo entre dos sucesos, esta diferencia en los tiempos dependerá de la velocidad relativa entre los observadores.
De igual manera, si se plantea la teoría de que el universo cuenta con tres dimensiones espaciales físicas que se pueden observar, es común considerar al tiempo como la cuarta dimensión; quedando el espacio-tiempo como el espacio de cuatro dimensiones.
Es importante resaltar que el espacio-tiempo presenta unas propiedades geométricas las cuales son:
Finalmente en el espacio- tiempo empleado en relatividad especial se pueden mezclar ambos en un espacio de cuatro dimensiones, originando el llamado espacio-tiempo de Minkowski, aquí es donde se identifican tres dimensiones espaciales ordinarias y una dimensión temporal complementaria.
Preguntas Frecuentes sobre Tiempo
¿A qué llamamos tiempo?
De manera cotidiana es utilizado para determinar el momento exacto durante el cual ocurre un hecho o es realizada una acción determinada. Leer más
¿Cómo se mide el tiempo?
Por lo general se expresa en segundos, minutos, horas, días, semanas, meses y años. Leer más
¿Qué es una línea del tiempo?
Corresponde a una representación gráfica que expresa de manera cronológica y ordenada los intervalos en los cuales ocurrieron ciertos acontecimientos de un tema en específico. Leer más
¿Cómo nos afecta el tiempo?
En la actualidad la vida se rige en torno al tiempo, es necesario llevar un control y organizar las actividades en relación a este preciado fenómeno físico. Leer más
¿Cómo se pronostica el tiempo?
Se realiza en los centros de meteorología con equipos especializados como satélites y computadoras que permiten predecir incluso con 3 días de anticipación.

https://conceptodefinicion.de/tiempo/
 

2.

Un nuevo modelo físico propone que el tiempo es sólo una ilusión
Son conceptos tan básicos que se resisten a ser definidos, y, sin embargo, sobre ellos se basa toda nuestra ciencia. ¿Qué son el espacio y el tiempo? Su interpretación ha variado a lo largo de la Historia y aún hoy es posible que una nueva manera de comprenderlos provoque la próxima revolución científica. Ya tenemos ejemplos como Julian Barbour, que propone un modelo serio de física alternativa en la que el tiempo no existe más que como una ilusión en nuestras mentes. Es posible que el espacio y el tiempo no tengan otra naturaleza que la que les asignemos por convención. Por Sara Lumbreras Sancho.

El espacio y el tiempo son conceptos tan fundamentales que se resisten a ser definidos (como en la conocida cita de San Agustín: “¿Qué es el tiempo? Si nadie me lo pregunta, lo sé. Si me lo preguntan, no lo sé”. Su naturaleza última está fuera del alcance de la ciencia y, sin embargo, toda la física se basa en ellos. Han evolucionado con la ciencia: el espacio y tiempo absolutos fueron esenciales para el desarrollo de la mecánica Newtoniana; un espacio-tiempo que depende del observador y que se ve deformado por la materia es el núcleo de la revolución traída por la Relatividad General.
Precisamente la Relatividad General, junto con la Teoría Cuántica de Campos (QFT) plantea un espinoso enigma a la ciencia actual, al no haberse encontrado ninguna teoría que las unifique. Pese a décadas de esfuerzo en varias líneas de investigación prometedoras (como las Supercuerdas), el proceso de unificación iniciado con las leyes de Maxwell no ha podido aún incluir con éxito a la Gravedad junto con las otras fuerzas. Es posible que la próxima revolución científica llegue con un cambio de paradigma que reconcilie las dos teorías enfrentadas con una nueva manera de comprender el espacio y el tiempo.
Como lo expresó Majid en su libro Espacio-tiempo cuántico y realidad física: “Está iniciándose un nuevo Renacimiento centrado en nuestra comprensión del espacio y el tiempo’’. Parece claro que la Ciencia necesita ayuda de la Filosofía, y que es indispensable en este punto identificar y analizar los supuestos que subyacen a las teorías dominantes actuales. Las viejas preguntas deben ser revisitadas con ojos nuevos: ¿Cuál es la naturaleza del espacio y el tiempo? ¿Son continuos o discretos? (y esta pregunta no tiene por qué tener la misma respuesta para ambos). ¿Son independientes de la consciencia? ¿Tienen sentido el espacio vacío o el tiempo sin cambio? ¿Cómo interactúan con la materia? La Filosofía ha reflexionado sobre estos problemas durante siglos. Revisar sus conclusiones nos puede proporcionar un buen punto de partida.
Breve historia de la filosofía del espacio y el tiempo
No es sorprendente que encontremos en Grecia los dos primeros ejemplos bien conocidos de filósofos del tiempo. Heráclito defendía que todo a nuestro alrededor se encontraba en un estado de constante fluir, que el cambio era lo único que permanecía. En la posición contraria, para Parménides, el cambio era una ilusión, ya que para él era lógicamente imposible.
Zenón, discípulo de Parménides, formuló las paradojas que le hicieron célebre. En ellas trataba de demostrar que el movimiento era imposible porque se componía de la suma de infinitas partes (por ejemplo, Aquiles no podrá nunca alcanzar a la tortuga a la que dio ventaja en una carrera, porque cuando llega al punto en el que se encontraba el reptil un instante atrás éste siempre ha avanzado algo más).
Aunque hoy en día estas paradojas nos resultan muy ingenuas, podemos sacar en claro que Parménides y Zenón asumían que el espacio y el tiempo eran continuos. Es más, éste es el caso de todos los filósofos naturales griegos bien conocidos, incluido Demócrito (para él sólo la materia estaba cuantizada, no el espacio infinito que la contenía).
Tres existencias
Platón propuso tres tipos diferentes de existencia: lo que es (material), en lo que se es (espacio), y por lo que se es (el modelo, la forma). Así que para él el espacio existía pero no de la misma manera que la materia.
Aristóteles afirmó que la existencia del espacio “la hace obvia el hecho de que las cosas puedan remplazarse”. Incluso propuso una definición: “El espacio ocupado por un objeto es la frontera estática más pequeña que lo contiene”. Sin embargo, el tiempo no tiene existencia real, ya que el pasado ya no existe y el futuro no existe todavía. Pese a ello, le dio una definición: “El tiempo es el número del cambio con respecto al antes y al después”. Esto implica que sólo existe en la mente, ya que “el tiempo es un tipo de número, y sólo el alma puede contar”.
Los teólogos medievales sostenían que Dios no existe en el tiempo sino en la eternidad, entendida como la existencia sin tiempo más que como tiempo sin principio ni final. Como lo expresó Boecio: “La eternidad es la posesión completa y perfecta de vida ilimitada en un único instante”. Es interesante notar que para los maestros medievales como San Agustín o Boecio, este ojo divino que lo ve todo en un mismo instante no suponía ninguna amenaza para la libertad. El conocimiento que Dios tiene del futuro no es equivalente al conocimiento humano de lo que está por venir, puesto que para Él, todos los momentos de la historia son equivalentes. Es útil mantener estas consideraciones en mente cuando reflexionemos sobre cosmologías sin tiempo como la de Barbour.
Kant interpretaba el espacio y el tiempo como nociones a priori que no son abstraídas por la experiencia, sino que son el marco que hace que ésta sea posible.
Newton creó definiciones precisas de los conceptos de movimiento, espacio y tiempo. De acuerdo con ellas, el tiempo fluye perfectamente uniforme, imperturbable. El espacio es absoluto, casi como un contenedor transparente que se extiende hasta el infinito. Concedió que sólo podían observarse movimientos relativos, pero afirmó que los movimientos absolutos podían deducirse a partir de ellos.
Vuelta al absoluto
Leibniz se oponía a este punto de vista, defendiendo una visión relativa del espacio donde sólo las distancias y velocidades relativas tenían significado físico real. Su correspondencia con el portavoz de Newton, Clarke, se siguió con interés. El argumento final de las discusiones fue un experimento donde un cubo de agua se hace girar. La curvatura que aparece en la superficie del líquido no responde al movimiento relativo entre el agua y las paredes del cubo sino claramente a la rotación absoluta. La discusión se considero cerrada a favor de la interpretación de Newton.
Hasta el siglo XIX no se volvió a sospechar de la noción invisible de espacio absoluto. Mach, científico brillante y empirista convencido, argumentó que el momento linear o angular de un objeto existe como consecuencia de su movimiento relativo con respecto al resto de objetos en el universo. Esto es lo que Einstein llamó el Principio de Mach. La inercia es entonces un concepto que se refiere no a cuerpos aislados, sino al universo en su totalidad.
Einstein se sintió inspirado por las leyes de Maxwell -que determinan la velocidad de la luz sin especificar con respecto a qué referencia- a postular que era la misma para todas. De hecho, todos los experimentos que habían intentado medir diferencias en la velocidad de la luz debidas a movimientos relativos con respecto al éter (como el experimento de Michelson-Morley) habían fracasado. Desde este punto de partida derivó un nuevo paradigma en el que todas las leyes de la Física son idénticas e independientes del observador.
El espacio y el tiempo están completamente entrelazados en el espacio-tiempo, y ya no son inmutables, sino que se ven deformados por la materia que contienen. Es su geometría, la que define la inercia ahora, ya que los marcos de referencia inerciales son los que siguen las geodésicas (caminos de mínima distancia) de este nuevo paisaje.
La Teoría de la Relatividad ha sido probablemente la transformación más profunda en nuestra comprensión del espacio y el tiempo, haciendo avanzar nuestro conocimiento de la Física. Ahora, la pregunta es si otro cambio en nuestra interpretación de estos conceptos puede traernos la próxima revolución. Quizá sus inicios están ya presentes en alguno de los modelos evocadores que presentamos en la siguiente sección.
El universo sin tiempo y otras perspectivas sugerentes
En esta sección presentamos algunas perspectivas interesantes que difieren de la interpretación convencional y que podrían desencadenar la próxima revolución científica. Exponemos la idea de universo eterno de Julian Barbour, junto con otras especulaciones provocativas de un grupo de respetados físicos contemporáneos.
Julian Barbour admitió que le fascinó leer en una de las obras de Mach: “Está totalmente fuera de nuestras capacidades medir cómo cambian las cosas en el tiempo. Más bien al contrario, el tiempo es una abstracción a la que llegamos a través de los cambios en las cosas”. Continúa sus reflexiones con la idea de que cuando medimos tiempo estamos en realidad midiendo distancia.
Utilizamos el ángulo cubierto por la manecilla del reloj para inferir el tiempo transcurrido. El tiempo solar es la distancia recorrida por el sol en el cielo. El tiempo sideral, lo que se han desplazado las estrellas. El tiempo atómico, las oscilaciones de un átomo de cesio. De hecho, es posible construir el reloj más sencillo analizando las trayectorias de tres cuerpos moviéndose inercialmente. Este reloj inercial fue presentado por primera vez por Neumann, y después lo desarrolló Tait. Con tres partículas, asumimos que una de ellas se encuentra en reposo.
Podemos utilizar la segunda como la manecilla del reloj, dividiendo en intervalos la distancia que cubre. Si suponemos que se mueve con velocidad unidad, es inmediato deducir la velocidad de la tercera partícula. De hecho, basta con tres instantáneas de un sistema inercial para definirlo completamente en estos términos y ser capaz de calcular todas las posiciones relativas de sus componentes, pasadas y futuras. Es importante caer en la cuenta de que estas instantáneas llegan sin ninguna información adicional que proporcione el momento en el que fueron tomadas.
Sistema sin tiempo
La posibilidad de describir un sistema (aunque fuera muy simple) sin tiempo es lo que inspiró a Barbour en su búsqueda de un modelo de universo eterno. Propone que el verdadero escenario del universo es el espacio de todas sus configuraciones posibles. Como estas configuraciones son eternas, da a este espacio el nombre de Platonia.
Todas las Platonias tienen un estado de mínimo tamaño y complejidad al que llama Alpha. Sin embargo, no hay Omega, ya que no existe ningún límite para el tamaño o la complejidad de lo que puede existir. Si trazamos una curva en Platonia, tendremos una posible historia del universo. De nuevo, no necesitamos del tiempo: como en la construcción de Tait, tener las posiciones relativas de los elementos es suficiente para definir una historia (y nada nos impide echar un vistazo a la posición relativa de las manecillas de nuestro reloj en cada punto de la curva).
Podemos definir distancias en Platonia como nos plazca, y, utilizándolas, trazar curvas de longitud mínima o geodésicas a través de su paisaje. Algunas definiciones de distancia son especialmente interesantes, ya que Barbour consigue derivar de ellas historias que son coherentes con las leyes de Newton o, con una definición más sofisticada, incluso con la Relatividad. Así, parece posible reformular la Mecánica por completo sin necesidad del tiempo.
Sin embargo, nuestra experiencia nos indica que el tiempo sí existe. Barbour intenta explicar el origen de esta persistente ilusión. En Platonia todas las posibles configuraciones del universo existen eternamente. Sin embargo, estas configuraciones aparecen con distinta intensidad.
Describe una bruma que se concentra en las mejores soluciones de la ecuación del universo, de una manera que recuerda a las probabilidades de la Mecánica Cuántica. Las soluciones que resuenan mejor son las que tienen más coherencia interna. Esta coherencia interna se manifiesta en la creación de lo que él define como cápsulas del tiempo.
Una cápsula del tiempo es un patrón estático que crea o codifica la apariencia de movimiento, cambio o historia. Por lo tanto, nuestra impresión de tiempo y movimiento sólo se debe a las huellas que deja, que son en realidad eternas, y a los recuerdos en nuestra consciencia que son también patrones eternos.
Bradbury imagina que el universo tiene probablemente una tendencia a encontrar más apropiadas las soluciones con más estructura. Esto hace que los universos que contienen consciencias sean los preferidos (ya que nada hay más complejo que la consciencia). Esto podría explicar el hecho de que la realidad que observamos es altamente compleja y estructurada, que es un estado altamente improbable estadísticamente.
Geometría no conmutativa, espacio-tiempo espuma, fractales y hologramas
La de Barbour no es la única cosmología de la eternidad. En las Redes Causales, como en los trabajos de Penrose y Sorkin, el espacio-tiempo se describe mediante una serie de eventos discretos en la que únicamente se especifica qué elementos preceden causalmente a otros.
Penrose reflexiona también sobre los valores que se le dan al momento angular en la Mecánica Cuántica. “¿Por qué decimos que un electrón tiene espín arriba o abajo, en vez de derecha o izquierda?”. Sólo sabemos que el espín de un electrón puede tomar dos valores distintos: ½ o -½. Asimilarlos a una dirección en el espacio carece de sentido. Cuando construimos una estructura a partir de partículas elementales, podemos calcular su momento angular total. Si trasladamos un electrón de una estructura a otra, podemos calcular la probabilidad de que la segunda estructura incremente o disminuya su momento angular en el ½ aportado por el nuevo electrón. Penrose interpreta esta probabilidad como el coseno del ángulo que forman las dos estructuras.
Si un electrón que está contribuyendo con momento angular positivo en su estructura origen tiene 100% de probabilidad de aportar momento positivo una vez transferido, entonces las dos estructuras son exactamente paralelas. Si siempre contribuye en sentido opuesto entonces son antiparalelas. Valores intermedios de probabilidad nos darían ángulos intermedios. Estas probabilidades son discretas, pero cuando las estructuras aumentan en complejidad el número de valores que puede tomar, la probabilidad aumenta. En el límite, da origen a un continuo de direcciones.
Las Redes de Espín no consideran el tiempo, pero Penrose las generalizó a un espacio-tiempo de cuatro dimensiones en su Teoría de Twistores. En esta teoría, las unidades básicas son los rayos de luz, ya que un fotón existe simultáneamente en todos los puntos atravesados en su trayectoria debido a la deformación relativista del tiempo.
En todos los modelos presentados hasta ahora se asume que la distancia de A a B es necesariamente la misma que de B a A. La geometría no conmutativa prueba a relajar esta condición y a aplicar la geometría no conmutativa al espacio. Alain Connes, un matemático francés, trabaja en explorar las posibilidades de esta concepción del espacio. Recordando a Demócrito y sus átomos (en la que los distintos elementos se distinguían por sus formas diferentes) propone que quizá la materia sea una manifestación de la estructura profunda del espacio-tiempo.
El tiempo como espuma
Ya hemos mencionado que la suposición de continuidad para el espacio-tiempo puede ser la causa de que no hayamos encontrado aún la Gravedad Cuántica. Sabemos de la Mecánica Cuántica que las distancias menores que la longitud de Plank carecen de sentido físico. El espacio-tiempo podría estar basado en una especie de espuma (como lo expresó John Wheeler), y su escala fundamental podría ser borrosa. Shahn Majid estudia las consecuencias que tendría esta descripción de la realidad. En particular, la teoría de Majid predice que la velocidad de la luz debería variar ligeramente con la frecuencia. Ya se están realizando experimentos para detectar estas desviaciones mínimas en la luz emitida por supernovas distantes utilizando el telescopio LISA.
Tim Palmer propuso una nueva interpretación de la Mecánica Cuántica en la que las probabilidades aparecen como consecuencia de la complejidad intrínseca de la estructura del espacio. Para él la realidad profunda debería ser descrita como un fractal. Su idea principal puede explicarse con la analogía de recibir las coordenadas de un punto en una costa de perfil intrincado. No seríamos capaces de saber con seguridad si el punto pertenece a la tierra o al mar, sino una probabilidad. Palmer sostiene que las probabilidades que encontramos en la Mecánica Cuántica se derivan de un fenómeno similar.
También se ha propuesto que toda la información contenida en el universo está codificada en su frontera. Este holograma cósmico encerraría en una superficie bidimensional la realidad tridimensional completa. Si el espacio es discreto, significaría que para que la superficie pudiera contener toda la información, el interior debería ser mucho más borroso. Craig Hogan cree que esta falta de definición puede estar detrás del ruido, por ahora inexplicado, que está perturbando el experimento GEO600 en Hannover, diseñado para detectar ondas gravitacionales.
Una intrigante posibilidad
De acuerdo con Barbour, podemos describir nuestra realidad sin referirnos al tiempo. Él toma este hecho como evidencia de que la naturaleza del tiempo es ilusoria. Sin embargo, incluso si su descripción es completamente consistente con las observaciones, esto no prueba que el tiempo no existe. Sólo prueba que es matemáticamente posible hacer Física sin tiempo, lo cual es una conclusión completamente diferente.
Como ya tenemos una Física basada en el tiempo, esto querría decir que tenemos dos modelos distintos que funcionan igualmente bien. En la Teoría de Campos Cuánticos nos encontramos también con dos modelos, formulados sobre espacio-tiempos diferentes, que dan resultados equivalentes. ¿Es posible que descripciones distintas del espacio y el tiempo nos proporcionen predicciones igualmente correctas?
Poincaré señaló el hecho de que nuestros sentidos no pueden percibir directamente la geometría del espacio. El espacio geométrico, el verdadero marco de nuestras experiencias, es distinto del espacio de representación que inferimos de nuestros sentidos.
Para empezar, la experiencia de la visión es un fenómeno puramente bidimensional. Sin embargo, tomamos la información de nuestras retinas y del resto de nuestras percepciones y cómo estas varían con el movimiento y los combinamos para formar el espacio de representación tridimensional.
Como resultado, ‘’Es también imposible representarnos los objetos externos en el espacio geométrico, así como imposible es para un pintor dibujar en una superficie plana los objetos con sus tres dimensiones. El espacio de representación es sólo una imagen del espacio geométrico, una imagen deformada por cierta perspectiva, y sólo podemos representarnos los objetos haciéndolos obedecer las leyes de esta perspectiva”.
El tiempo como convención
Poincaré propone un experimento mental en el que consideramos un mundo contenido en una esfera en el que todos los cuerpos tienen el mismo coeficiente de dilatación, así que la longitud de cualquier objeto es proporcional a su temperatura absoluta. La temperatura de este mundo disminuye con la distancia al centro según la fórmula R2 – r2, así que en su frontera la temperatura es el cero absoluto. Incluso aunque este universo es finito, para sus habitantes es de hecho infinito ya que se vuelven más y más pequeños al aproximarse a la frontera. Estos seres imaginarios estudiarían la física de su mundo, completamente inconscientes de las dilataciones térmicas. Cuando se mueven, experimentan una contracción en sus miembros en la dirección de la frontera. Sin embargo, esta deformación se consideraría una serie de perspectiva, con lo que sus sentidos se ajustarían para corregirla.
Poincaré señala que “sería un error concluir que la geometría es, ni tan siquiera en parte, una ciencia experimental. Si fuera experimental, sólo sería aproximada y provisional. ¡Y qué burda aproximación sería! La geometría consistiría únicamente en el estudio de los movimientos de los cuerpos sólidos, pero en realidad no le atañen los sólidos naturales: su objeto son los sólidos ideales’’. Finalmente argumenta que la experimentación puede guiarnos, pero no impone ninguna elección de geometría ni puede revelarnos cuál es la más apropiada, la verdadera.
Es imposible medir una distancia sin una regla, o sin la posibilidad de desplazar la regla, ya que sólo podemos comparar objetos yuxtapuestos. Asumimos que la regla se mantiene constante durante el proceso. Éstos son los supuestos que dan forma a la geometría que encontramos. Podríamos encontrar una solución distinta si tomásemos otras hipótesis. Por ejemplo, si en vez de asumir que las reglas no se distorsionan, asumimos que la velocidad de la luz es constante, encontramos la geometría relativista.
Es posible que el espacio y el tiempo no tengan otra naturaleza que la que les asignemos por convención. Parece que podemos encontrar teorías igualmente válidas basadas en supuestos muy diferentes. Esto puede indicar que su realidad fundamental no existe independientemente de la experiencia que los asume, en una interdependencia inevitable. También podría ser que su naturaleza más básica no pudiera expresarse matemáticamente y sólo pudiéramos encontrar aproximaciones. O, finalmente, podría significar que la naturaleza puede describirse de varias maneras distintas. Los diferentes modelos que funcionen con éxito deberían ser entendidos como descripciones de la misma realidad, pese a sus diferentes expresiones.

https://tendencias21.levante-emv.com/un-nuevo-modelo-fisico-propone-que-el-tiempo-es-solo-una-ilusion_a3879.html

 
3.
La física de los viajes en el tiempo explicada por dos de los mejores físicos teóricos
Explicar qué dice la física actual acerca de la posibilidad de viajar en el tiempo sorteando las ecuaciones matemáticas y los conceptos más complejos es un auténtico reto. Sin embargo, estamos convencidos de que es posible hacerlo de una forma didáctica que cualquier persona con curiosidad puede seguir sin necesidad de conocer minuciosamente qué propone la teoría general de la relatividad.
Afortunadamente, no hemos abordado este desafío solos; hemos contado con la ayuda de dos físicos teóricos españoles expertos en esta materia. Ambos tienen mucha experiencia en el ámbito de la investigación y una capacidad didáctica que está fuera de toda duda. Álvaro de Rújula es un prestigioso físico de partículas que, entre muchos otros logros, ha dado clase en Harvard y ha liderado la división de física teórica del CERN. Incluso ha tenido la oportunidad de viajar en el tiempo para hablar cara a cara con Albert Einstein (en la ficción y con mucha gracia, claro).
El currículo de José Luis F. Barbón es igualmente impresionante. Este físico teórico es un experto en teoría cuántica de campos, gravedad cuántica y agujeros negros, entre otras materias. Ejerce como investigador en el CSIC, y actualmente dirige el Instituto de Física Teórica (IFT), una institución en la que trabaja mano a mano con Álvaro y otros investigadores. Como estáis a punto de comprobar, ambos tienen una vocación didáctica muy evidente, por lo que sus conferencias (algunas están disponibles en YouTube) son muy disfrutables.
Indagar de una forma rigurosa en la física de los viajes en el tiempo requiere que coqueteemos con la geometría del continuo espacio-tiempo. Y también con la teoría general de la relatividad. Es un terreno profundamente hipotético y especulativo, pero, aun así, la física teórica nos propone algunas respuestas extraordinariamente interesantes. Y sorprendentes. Pero lo mejor de todo es que recorrer este camino de la mano de estos dos físicos es una experiencia irrepetible. Prometido.
La velocidad de la luz es absoluta
No hay mejor forma de iniciar nuestro viaje que intentando afianzar nuestra percepción acerca del continuo espacio-tiempo y repasando la que sin duda es la propiedad más asombrosa de la luz: la invariabilidad de su velocidad en un medio determinado independientemente del estado de movimiento o reposo de la fuente que la emite y del observador. Este atributo es patrimonio exclusivo de la luz, por lo que no lo comparte con ningún otro objeto del universo. Álvaro nos los explica de una forma asequible:
«El espacio y el tiempo son tan fundamentales que podemos hablar de ellos, pero sin llegar a identificar con la máxima precisión qué son en realidad. Podríamos asimilar el espacio a una especie de conjunto de fichas de dominó, de manera que podemos pegar unas a otras en un plano y después colocar otro plano encima construido de la misma manera. Obviamente el espacio realmente no es así, pero este símil puede ayudarnos a entender de alguna forma su naturaleza», puntualiza.
«En cualquier caso, lo primero que podemos hacer es intentar entender la relación que existe entre el espacio y el tiempo. Si tenemos un espacio plano y en él hay dos hormigas podemos dibujarlas en un cierto instante del tiempo, y luego en un instante posterior podemos dibujar un plano encima con las mismas dos hormigas, pero colocadas en posiciones diferentes. De esta forma podríamos construir una especie de sándwich en el que el espacio discurre en la dirección horizontal de mi dibujo, y el tiempo en la vertical».
«No obstante, lo que acabamos de hacer es más que un simple dibujo. Desde finales del siglo XIX y culminando con el trabajo de Einstein de 1905 (la teoría especial de la relatividad), sabemos que hay algo muy curioso que relaciona el espacio y el tiempo: existe una velocidad máxima. No puedes viajar a una velocidad superior a la de la luz. Si tengo un cohete con un señor dentro que está avanzando a 10 km/h respecto al cohete, y el cohete con respecto a mí que estoy en la Tierra también está avanzando a 10 km/h, el señor con respecto a mí avanza a 20 km/h si tanto él como el cohete se desplazan en la misma dirección».
«Sabemos que hay algo muy curioso que relaciona el espacio y el tiempo: existe una velocidad máxima. No puedes viajar a una velocidad superior a la de la luz»
«Esta idea es intuitiva, pero, sin embargo, si la velocidad del cohete fuese 3/4 partes de la velocidad de la luz, y la del señor del interior del cohete en relación al propio cohete también fuese 3/4 partes de la velocidad de la luz, al observarlos desde fuera yo creería que el señor avanzaría a una velocidad de 3/4+3/4 de la velocidad de la luz. Es decir, al 150% de la velocidad de la luz, que es una cantidad mayor que la velocidad de la luz. Sin embargo, este cálculo está mal hecho. En realidad, nuestro universo no funciona así. Si hacemos el cálculo correctamente la velocidad total del señor del interior del cohete con respecto a mí será un poco inferior a la velocidad de la luz», concluye Álvaro.
José Luis prosigue la explicación de Álvaro proponiéndonos otro experimento mental que también puede resultarnos útil para interiorizar esta crucial propiedad de la luz antes de continuar nuestro viaje:
«En la física a la que estamos acostumbrados no pensamos que el ritmo de un reloj dependa de su movimiento. Si sincronizamos dos relojes y nos llevamos uno en un viaje en tren para posteriormente volver a reunirlos, el desplazamiento a cierta velocidad de uno de ellos no parece tener ningún efecto en la sincronización. En la física newtoniana, la de antes de la relatividad, el tiempo es absoluto. Esto significa que el ritmo de un reloj ideal que ni se atrasa ni se adelanta es el mismo en todas partes. Es universal. No depende de dónde está el reloj, y tampoco de su estado de movimiento».
«Para describir los fenómenos de nuestra vida cotidiana no necesitamos cambiar esta hipótesis simplificadora. Sin embargo, lo que descubrió Einstein es que esto no es correcto. A finales del siglo XIX los físicos se pusieron a estudiar con más detalle la luz, y se dieron cuenta de que su velocidad es rara porque es absoluta. Esto quiere decir que da igual cómo la midas, e incluso si te mueves respecto a la fuente, o si es la fuente la que se mueve respecto a ti; siempre obtienes la misma velocidad. Esto para ellos fue muy chocante porque todas las velocidades son relativas. Si voy por la autopista y un coche me adelanta lo veo adelantarme despacio, pero si estoy quieto en el arcén lo veo pasar a toda velocidad», asevera José Luis.
«Al combinarlas las velocidades se suman o se restan, pero que haya un objeto, que es la luz, con una velocidad absoluta es chocante. Los experimentos indicaban que esto es así, pero no se entendía. Einstein observó que, efectivamente, el espacio es obviamente relativo en el sentido de que la distancia que recorre un objeto depende del lugar desde el que estoy mirándolo. Si voy al encuentro de ese objeto la distancia que me separa de él es más corta. Esto significa que el espacio es relativo desde el punto de vista del observador. A partir de esta reflexión Einstein concluyó que si el espacio es relativo y el tiempo es absoluto, entonces su cociente es relativo».
«En este contexto si quiero que el cociente entre el espacio y el tiempo para un cierto fenómeno sea un valor absoluto tengo que hacer el tiempo relativo también. De esta forma las dos relatividades, la del tiempo y la del espacio, se cancelan. Einstein se dio cuenta de cómo debe variar el tiempo de acuerdo con el estado de movimiento del observador para que la velocidad de la luz sea siempre la misma. Esto es, en definitiva, lo que se observaba en los experimentos. A partir de aquí en vez de intentar demostrar que la luz tiene una velocidad absoluta, algo que parece imposible a partir de la teoría newtoniana, decidió asumir que existe una velocidad absoluta y comprobar si esto es consistente con todo lo demás».
«Entonces se dio cuenta de que la física no se destruía ni se volvía inconsistente. De hecho, se percató de que podía reconstruir todo su armazón asumiendo que existía una velocidad absoluta y sin que por ello se produjesen inconsistencias. Lo único que sucedía era que había unas fórmulas que tenían unas modificaciones que se hacían visibles a velocidades cercanas a la de la luz. Cuanto más rápido iba un objeto comparado con la velocidad de la luz, más se parecía su movimiento al de la luz, y más efectiva era la relatividad del tiempo desde el punto de vista de que los relojes no marchan igual si se están moviendo».
«La clave es que para encajar todo esto Einstein decidió modificar el concepto del tiempo. En su teoría el ritmo del tiempo depende del estado de movimiento de un objeto, pero también depende de si estás en un campo gravitacional intenso. Si estás en uno de ellos, aunque estés parado, el ritmo con el que transcurre el tiempo es más lento. Si pasas una temporada cerca de un agujero negro el tiempo para ti transcurrirá más despacio que para alguien que está en la Tierra. Simplemente vivimos en un mundo que tiene estas propiedades. Podríamos vivir en un mundo newtoniano, pero no es el caso. Como la velocidad de la luz es absoluta y es finita, pasan estas cosas», concluye José Luis sin disimular su entusiasmo.
Los viajes en el tiempo hacia el futuro y el principio de equivalencia
«La existencia de una velocidad máxima nos ha obligado a cambiar nuestras ideas acerca del espacio y el tiempo. De hecho, esto es lo que describió Einstein en 1915 con su teoría general de la relatividad. A partir de aquí podemos observar que viajar al futuro es fácil. Si observamos el reloj de un piloto de avión que acaba de dar una vuelta a la Tierra y lo comparamos con el de su hermano gemelo que se quedó en casa, veremos que el del piloto va retrasado a pesar de que inicialmente estaban sincronizados. En cierto sentido este último ha viajado al futuro de su hermano gemelo», expone Álvaro.
«Parece absurdo, pero este experimento se ha hecho y funciona perfectamente. De hecho, se repite todos los días miles de veces a causa del GPS. Los satélites de esta red para localizarnos tienen que tener en cuenta que como se están moviendo respecto a nosotros sus relojes se retrasan respecto al nuestro. De esta forma, llevando esta idea al extremo el piloto podría viajar muy deprisa y volver cuando su hermano gemelo tiene 80 años y él solamente tiene 30. Este efecto no solo es posible, sino que se demuestra todos los días millones de veces».
«Imaginemos que regresamos a nuestro cohete en el vacío y vemos en su interior al astronauta flotando debido a que no se ve afectado por la acción de ninguna fuerza. Si el cohete empieza a acelerar y colocamos debajo de los pies del astronauta una báscula comprobaremos que ya no marca cero como cuando el astronauta flotaba; marcará, por ejemplo, 75 kg, debido a que el cohete está acelerando con la misma aceleración que la gravedad sobre la Tierra».
«Esta observación fue la que llevó a Einstein a formular la hipótesis conocida como principio de equivalencia, que nos dice que la aceleración en un espacio lo suficientemente pequeño y la gravedad son lo mismo. Esto significa que la gravedad es un aspecto de la aceleración, y la aceleración está íntimamente relacionada con la gravedad», nos explica Álvaro con el propósito de que reparemos en uno de los principios fundamentales de la relatividad general.
La materia curva el espacio-tiempo
Álvaro nos propone que continuemos adelante indagando un poco más en la relación que existe entre la materia y el continuo espacio-tiempo. Y para hacerlo nos sugiere un nuevo experimento mental muy sencillo:
«Si dibujamos un triángulo en un plano por más o menos alargado que sea sus ángulos siempre sumarán 180 grados. Esta es la propiedad que tiene un espacio plano. Sin embargo, si dibujo un triángulo sobre un espacio con geometría curvada, como, por ejemplo, la superficie de una esfera, sus ángulos sumarán 270 grados. Una de las predicciones de la teoría de la relatividad nos dice que la luz puede ser desviada por un objeto que tiene masa, de manera que podemos tomar tres puntos del espacio para formar con ellos un triángulo, colocar en cada uno de ellos un láser y enviar un haz de luz de uno a otro para conectarlos con rayos de luz en línea recta».
«Lo curioso es que si ahora coloco la Tierra, que es un objeto con una gran masa, en medio de estos puntos provocaré que la luz se curve un poco, de manera que los ángulos que describían los haces de luz serán un poco mayores que los ángulos iniciales. La suma de los tres ángulos cuando la luz viaja en un espacio curvado ya no será 180 grados; será una cifra algo mayor que esta cantidad. Esta es la forma en que cualquier objeto que tenga masa o energía actúa sobre la estructura del espacio-tiempo, provocando que sea curvada y no plana», concluye este físico de partículas.
Las ecuaciones de Einstein permiten los atajos en el continuo espacio-tiempo
«Para hablar de los agujeros de gusano tenemos que recurrir, además de a la geometría, a algo aún más perverso llamado topología. Supongamos que tengo una hoja de papel y que la enrollo para darle forma de cilindro. Si inicialmente hubiese dibujado un triángulo en la hoja de papel sus ángulos después de enrollarla para constituir con ella un cilindro continuarán sumando 180 grados. Esto me está indicando que este espacio parece curvo porque lo he metido en un espacio tridimensional, que es el que tengo en mi cilindro. Lo más curioso es que puedo hacer una cosa todavía más perversa: convertir el cilindro en una rosquilla, cerrándolo», nos explica Álvaro.
«Al hacerlo me daré cuenta de que ahora tiene un agujero, y este orificio es importante porque es una propiedad topológica del objeto con el que estamos trabajando que no puedo borrar. Es obvio que hay una diferencia importante entre espacios planos y espacios como el de nuestra rosquilla, que, a pesar de ser planos, tienen agujeros. Los agujeros de gusano tienen mucho que ver con esto. Si tomo de nuevo una hoja de papel, que es un espacio plano, y le dibujo dos puntos separados por una cierta distancia, de manera que representen dos puntos del espacio-tiempo, puedo doblarlo con el propósito de que un punto quede encima del otro».
«Ahora dos puntos que estaban muy alejados en el espacio-tiempo resulta que están muy cerca, uno encima del otro. Si cojo una aguja y hago un agujero en la hoja para que un punto llegue al otro habré construido una especie de puente entre ellos. Desde un punto de vista geométrico esto es un agujero de gusano, de modo que se trata de un objeto que pone en contacto cercano dos puntos que inicialmente podían estar muy distantes en el espacio-tiempo. En realidad lo que he hecho es darle una topología nueva, de modo que mi espacio-tiempo ya no tiene una topología sencillísima; tiene una más complicada».
 
«Si ahora extiendo el plano de nuevo lo que sucederá es que el agujero de gusano se transformará en una especie de asa, y esta asa tiene un agujero. Todas las ideas en las que podemos indagar acerca de los agujeros de gusano tienen que ver con estas topologías complicadas en las que hay asas y agujeros. La teoría de la relatividad general consiste en una ecuación fundamental que todo el mundo ha visto en algún lugar, y esta ecuación tiene varias soluciones. Precisamente, algunas de estas soluciones describen los agujeros de gusano, y han sido comprobadas con mucha precisión, pero siempre localmente. Alrededor de un punto. Hasta ahora los físicos no hemos podido comprobar las soluciones de la ecuación que tienen que ver con estos espacios que conectan puntos a gran distancia».

José Luis recoge el testigo de Álvaro recordándonos la descomunal cantidad de energía que necesitamos para acelerar un objeto macroscópico con el propósito de que alcance una velocidad cercana a la de la luz. Solo así podríamos observar un desfase temporal claramente perceptible:
«La fórmula que describe este fenómeno requiere que para que el retraso temporal sea apreciable te acerques mucho a la velocidad de la luz. Y hacerlo con un objeto material y macroscópico es muy difícil porque necesitas unas energías bestiales. Ningún objeto con estas características consigue acercarse a la velocidad de la luz excepto cuando tienes dos agujeros negros que están a punto de colisionar, o una estrella de neutrones. Pero son sistemas muy extremos. Además, cuando desarrollas la teoría te das cuenta de que esa velocidad absoluta es también una velocidad límite. Para alcanzar la velocidad de la luz necesitas energía infinita».
«Esto quiere decir que cada vez cuesta más acelerar un objeto, de manera que el último 1% es mucho más costoso que el primer 1%, por lo que la velocidad de la luz establece un límite para los objetos con masa. Lo interesante es que si pudieses enviar una señal de información más rápido que la velocidad de la luz la teoría nos dice que otro observador que se está moviendo con una cierta velocidad respecto a ti podría verlo invertido en el tiempo. Podría ver que la información va hacia atrás en el tiempo. Este fenómeno tiene una consecuencia muy significativa: si fuésemos capaces de superar la velocidad de la luz podríamos enviar señales al pasado», puntualiza José Luis.
«En este contexto el método obvio de enviar señales al pasado, o la forma ‘pobre’ de viajar al pasado debido a que si no puedes hacerlo tú al menos podrías enviar una señal para que ocurra algo que te afecte, requeriría superar la velocidad de la luz. El problema es que la teoría no nos permite hacerlo utilizando este método de ‘fuerza bruta’ debido a que, como hemos visto, necesitamos energía infinita. Todo lo que acabamos de ver describe el funcionamiento del espacio-tiempo normal y corriente, que es plano y tiene una geometría trivial en la que los triángulos rectángulos satisfacen el teorema de Pitágoras».
«Lo que sucede es que cuando tienes campos gravitacionales muy intensos el espacio se deforma, por lo que nos podemos preguntar si ese grado de deformación puede ser tan radical para crear atajos que te permitan ir de un sitio a otro más rápido. Incluso es razonable preguntarse si esos atajos pueden llevarnos al pasado. Estas ideas son muy especulativas, pero se apoyan en unas soluciones de las ecuaciones de Einstein que lo permiten. El problema es que esta propuesta no puede ser utilizada para escribir el guión de una película de ciencia ficción que sea interesante».
«De todas las soluciones de las ecuaciones de Einstein que sugieren la aparición de un bucle temporal que puede ser utilizado por una partícula para regresar al pasado se desprende que la partícula olvida que viene del futuro. Son unas soluciones tan especiales, tan cristalinas, que si las tocas un poco se desmoronan. Son como un castillo de naipes. De esta forma, ninguna solución de las ecuaciones permite que la partícula haga algo diferente más allá de repetirse a sí misma, como, por ejemplo, recordar que viene del futuro gracias a su propio mecanismo interno, debido a que cada copia tiene una energía ligeramente diferente. La partícula es distinta cada vez que recorre el bucle».
«La energía de cada copia de la partícula curva el espacio de una forma ligeramente diferente, y al hacerlo el bucle se desmorona porque ya no estamos frente a un fenómeno periódico. De alguna forma es como si el bucle no se cerrara. Es como si tienes un rollo de papel higiénico que está constantemente enrollándose porque en cada vuelta es ligeramente diferente. No lo puedes pegar y decir que es el mismo. En definitiva, todas las soluciones de las ecuaciones de Einstein que permiten la existencia de estos objetos, conocidos como curvas temporales cerradas, que es lo más próximo que tenemos a un viaje en el tiempo, provocan que la partícula o el objeto que viaja se esté repitiendo a sí mismo continuamente», concluye José Luis.
Los agujeros de gusano no sirven para viajar al pasado
José Luis continúa su explicación invitándonos a adentrarnos en el inquietante mundo de las paradojas desencadenado por la posibilidad de viajar a nuestro pasado:
«Lo que hemos visto hasta ahora no se opone a algunas posibilidades interesantes. Si realmente viajas al pasado te puedes encontrar contigo mismo cuando eras más joven. Te encuentras con una copia de ti mismo, de manera que si decides matarla se produciría una inconsistencia con el hecho de que tú hayas podido venir del futuro. Si todo lo que vas a hacer es periódico, es trivial, como lo que sucede en la película ‘Atrapado en el tiempo’, no hay ninguna contradicción. La cuestión es si hay situaciones en las que puedes hacer algo interesante que sea consistente».
«El número de posibles historias consistentes si tienes bucles cerrados en el tiempo es mucho más pequeño que si no los tienes. Y cuanto más complicado sea el sistema más difícil va a ser que sean consistentes con el viaje en el tiempo»
«Una posibilidad sería que al viajar al pasado y encontrarte con tu yo más joven rebusques en tus recuerdos para ver si te acuerdas de haber visto a un tipo que se parecía mucho a ti, solo que parecía más viejo, te llamó la atención, y luego te olvidaste de él. Podrías llegar a recordarlo, hipotéticamente, y esta sería una historia posible y compatible. No ha pasado nada. No hay ninguna contradicción. El recuerdo estaba ahí. Lo habías olvidado, pero lo puedes recuperar», puntualiza José Luis.
«Lo interesante de este tipo de viajes en el tiempo es que no son inconsistentes. Sin embargo, el número de historias que son compatibles y no son inconsistentes es mucho más pequeño si tienes el fenómeno de los bucles debido a que hay miles de maneras de estropearlos. O bien de generar una pequeña perturbación que tenga un efecto futuro que impida que entres en el bucle».
«El número de posibles historias consistentes si tienes bucles cerrados en el tiempo es mucho más pequeño que si no los tienes. Y cuanto más complicado sea el sistema más difícil va a ser que sean consistentes con el viaje en el tiempo. Para una partícula elemental puede ser fácil porque es tan simple que hace muy pocas cosas. Básicamente lo único que hace es girar sobre sí misma e ir de un lado para otro. Por esta razón, para una partícula viajar hacia atrás en el tiempo es, en vez de ir de A a B, ir de B a A. Y en vez de girar en el sentido de las agujas del reloj, girar en sentido contrario».
«En cualquier caso, no es la misma sensación que tienes cuando ves que una taza de café se cae de la mesa y se desparrama. Si ves este fenómeno hacia atrás en el tiempo ves una cosa muy rara en la que miles de millones de moléculas se ponen de acuerdo de una forma sincronizada para volver a constituir la taza», argumenta el director del IFT.
«Esta es la razón por la que se cree que si alguna vez se pudiesen formar este tipo de bucles para ser consistentes tendrían que dar lugar a historias como la de la película ‘Atrapado en el tiempo’. El problema es que nadie sabe cómo hacer estas cosas, y no es un problema tecnológico; es posible que las leyes de la física lo prohíban. De hecho, los agujeros de gusano que podemos describir conceptualmente no sirven para viajar al pasado. Al menos con los que trabajamos ahora mismo. Hay algunas construcciones que parecen ser compatibles con las teorías que tenemos, pero en ningún caso son atajos».
«Imaginemos que construimos un agujero de gusano para viajar de aquí a Andrómeda utilizando alguno de los modelos conceptuales que por el momento consideramos correctos. Si viajamos por fuera a la velocidad de la luz tardaríamos en llegar dos millones de años, pero si viajamos por el interior del agujero de gusano tardaríamos más tiempo. No son un atajo. Lo que sí podemos demostrar es que si fuésemos capaces de formar un atajo podríamos utilizarlo para viajar hacia atrás en el tiempo, aunque existen indicios de que esa construcción sería inconsistente. Esto significa que si modificamos el agujero de gusano para intentar que sea un atajo, para acortarlo por dentro, llegará un momento en el que colapsará. Y lo destruiremos».
«El origen de este colapso reside en la necesidad de utilizar energía negativa. Y es un recurso muy difícil de conseguir debido a que las partículas elementales tienen energía positiva si no les haces nada. Esto significa que tienes que colocarlas en unas situaciones muy especiales para que tengan energía negativa en unas zonas muy concretas. Sin embargo, la forma en que se curva el espacio cuando tienes energía negativa concentrada provoca que este sistema tienda a colapsar. Tiende a formarse un agujero negro. Cuando intentas manipular demasiado la energía negativa el objeto se precipita hacia el colapso».
«Hay un teorema aún sin demostrar conocido como ‘la conjetura de protección cronológica’, que es una hipótesis formulada por Stephen Hawking, que dice que no hay ningún método físico con energía finita que pueda generar curvas cerradas temporales estables de forma consistente. Actualmente la idea que propone suministrar muchísima energía a una máquina capaz de retorcer de algún modo el espacio-tiempo para formar un bucle, que es como funcionaría una máquina del tiempo, no es posible con energía finita».
«Todos los agujeros de gusano que podemos construir hoy de una manera puramente matemática son del tipo de los que no son atajos. Esto significa que ir por dentro es más largo que ir por fuera, por lo que no son muy útiles. Eso sí, parece que se pueden estabilizar. Otra opción son los agujeros de gusano que descubrieron Einstein y Rosen, conocidos como puente Einstein-Rosen, que unen dos agujeros negros. De alguna forma es como si el interior de dos agujeros negros estuviese enganchado por dentro como si fuesen dos hermanos siameses. El problema es que tampoco podemos hacer cosas divertidas con ellas porque no son atravesables. Son agujeros negros, por lo que podemos entrar por uno, pero no podríamos salir por el otro».
«Hay una conjetura, probablemente acertada, que propone que cualquier intento de construir un atajo real en el espacio-tiempo que podamos transformar en un bucle temporal está condenado al fracaso porque toda la zona colapsaría en un agujero negro antes de lograrlo. No habría una forma físicamente correcta de hacerlo a partir de un estado en el que antes no había un bucle y tienes energía finita para conseguirlo. Actualmente hay físicos teóricos que están intentando demostrar este teorema», concluye José Luis con convicción.
El cine de ciencia ficción (a veces) respeta algunas leyes de la física
No podía concluir mi conversación con estos dos físicos teóricos dejando escapar la oportunidad de preguntarles si hay alguna película de ciencia ficción que les parece razonablemente respetuosa con las leyes de la física. Y sí, como sospechaba, las hay. De hecho, las que nos proponen son algunas de las que los entusiastas de este género cinematográfico más hemos aclamado durante los últimos años. Lo que nos cuenta José Luis es muy interesante:
«Yo creo que la película que está mejor hecha es ‘Interstellar’. Todo lo que sucede en la parte final, cuando el protagonista entra en el interior del agujero negro, es una pura elucubración. No obstante, utiliza un lenguaje que no es del todo trivial gracias en gran medida al asesoramiento de Kip Thorne».
«Yo creo que la película que está mejor hecha es 'Interstellar'. Hay partes muy bien calculadas, aunque otras no tanto»
«Hay muchas partes de la película que están muy bien calculadas, aunque otras no tanto, como, por ejemplo, las fuerzas de marea que actúan sobre el planeta que está sometido al intenso campo gravitacional del agujero negro. Si asumimos que ese planeta lleva ahí millones de años lo natural es que esté sometido al mismo efecto que actúa sobre la Luna, por lo que siempre ofrecería la misma cara al agujero negro y no habría mareas».
«Otra película que está muy bien es ‘Gravity’ porque la física de la microgravedad está muy bien hecha, aunque hay partes en las que también le han echado mucha imaginación. También me gusta ‘Marte’ porque la parte de los cálculos que tiene que hacer para sobrevivir tiene sentido, aunque, de nuevo, hay otras partes que no se pueden justificar desde un punto de vista científico. Incluso ‘Atrapado en el tiempo’ ilustra bastante bien la idea de que si tuviésemos una máquina del tiempo casi con toda seguridad sería aburridísima porque estaríamos repitiendo lo mismo constantemente», sentencia José Luis soltando una sonora carcajada.

https://www.xataka.com/investigacion/fisica-viajes-tiempo-explicada-dos-mejores-fisicos-teoricos

  

4.
El tiempo se diluye en el universo cuántico
El tiempo cuántico está en una superposición de estados en la que pasado, presente y futuro se funden, y en la que los procesos de causa y efecto se invierten. Toda una promesa para la futura computación cuántica.
 
La superposición cuántica es una de las extrañas propiedades del mundo subatómico que permite a las partículas elementales de la materia estar simultáneamente en dos lugares o estados diferentes.
Tal como explicamos en otro artículo, para explicar la superposición de estados, el físico Erwin Schrödinger imaginó en 1935 un gato encerrado en una caja junto a una botella de gas venenoso y un plato de comida. El gato puede jugar con el dispositivo venenoso y morir o tomar el alimento y vivir, con una probabilidad del 50% para cada opción.
Según el mundo cuántico, el gato está en realidad vivo y muerto a la vez, en una superposición de estados, hasta que un observador (el científico), abre la caja para ver lo que ha pasado y se produce un salto cuántico que concreta la suerte del gato.
El gato de Schrödinger es solo un experimento imaginario que explica lo que supuestamente ocurre en el universo cuántico.
Pero ahora, un grupo de físicos de la Universidad de Queensland, dirigido por Magdalena Zych, ha desarrollado otro experimento imaginario no menos sorprendente.
Ha descubierto que la superposición de estados no sólo es una propiedad de las partículas elementales, sino también del tiempo. Eso significa que no solo el gato de Schrödinger está vivo y muerto a la vez, sino que está tomando el alimento y el veneno al mismo tiempo en un bucle interminable.
Dinámica incomprensible
Es decir, según este nuevo experimento imaginario, el tiempo cuántico está también en una superposición de estados en la que el pasado, el presente y el futuro se funden, y en la que los procesos de causa y efecto se invierten, convirtiendo el efecto en causa y la causa en efecto indistintamente, en una dinámica incomprensible para los sentidos.
«La secuencia de eventos puede convertirse en mecánica cuántica», explica uno de los autores de esta investigación, Igor Pikovski, del Centro de Ciencia e Ingeniería Cuántica del Instituto de Tecnología Stevens, en un comunicado.
Y añade: “observamos el orden temporal cuántico, en el que no hay distinción entre un evento que causa el otro o viceversa. Al mismo tiempo, A puede causar B y B puede causar A, en un bucle cuántico que desdibuja las líneas de causa y efecto».
El trabajo, publicado en Nature Communications, se encuentra entre los primeros en revelar las propiedades cuánticas del tiempo.
Merced a estas propiedades cuánticas, el flujo del tiempo cuántico no sigue una flecha hacia el futuro, sino que está en un estado en el que la causa y el efecto pueden coexistir en una dirección que tanto avanza hacia adelante como retrocede hacia atrás (el pasado).
Superposición en el espacio
El experimento imaginario de este grupo de físicos no se desarrolla en una caja, sino que usa la imaginación para investigar qué pasaría con dos naves espaciales que estuvieran en la misma situación que el gato, es decir, afectadas por una superposición de estados.
En el primer momento del experimento imaginario, las dos naves acuerdan dispararse recíprocamente unos proyectiles y evitar daños. Y lo consiguen conviniendo los tiempos de los disparos: sabiendo cuándo va a disparar la otra nave, la atacada se desplaza un poco antes y escapa al proyectil. Si cualquiera de las naves dispara demasiado pronto, destruirá a la otra.
Hasta aquí, todo funciona tal como se desarrolla en el mundo ordinario. Pero los investigadores fueron más lejos e introdujeron en el experimento una teoría formulada por Einstein en 1915.
Según la relatividad general, la presencia de un objeto masivo ralentiza el flujo del tiempo, por lo que los investigadores imaginaron que colocaban un planeta cerca de una de las dos naves espaciales para ralentizar su flujo del tiempo.
Aunque conozca el momento en el que la otra nave va a efectuar el disparo, la nave cercana al planeta no evita su destrucción, ya que su tiempo ha dejado de coincidir con el de la nave atacante. Esa asincronía temporal, resultado de la relatividad general, habría acabado con una de las naves.
En la siguiente fase del experimento imaginario, los investigadores, en vez de introducir la relatividad general, recurrieron a la mecánica cuántica y pusieron al planeta en un estado de superposición de estados cerca de una de las naves.
Aspecto cuántico del tiempo
El resultado fue tan sorprendente como el que obtuvo Schrödinger hace casi 85 años: cerca de un planeta en superposición de estados, las dos naves son destruidas y sobreviven al mismo tiempo, porque la superposición del planeta se prolonga a la secuencia de ataques y desvíos programada por las dos naves.
En consecuencia, las naves estelares se destruyen y sobreviven simultáneamente en dos eventos separados,  ilustrando por primera vez cómo puede ocurrir este escenario cuántico y cómo puede verificarse científicamente.
«Mover planetas es difícil», dijo Pikovski. «Pero imaginarlo nos ayudó a examinar un   aspecto cuántico del tiempo que antes era desconocido», concluye.
Otro de los autores, Fabio Costa, de la Universidad de Queensland, añade a su vez: «Aunque una superposición de planetas nunca sea posible, la tecnología permitió una simulación de cómo funciona el tiempo en el mundo cuántico, sin usar la gravedad».
Y destaca la importancia del hallazgo para las tecnologías futuras: los ordenadores cuánticos pueden aprovechar esta particularidad del tiempo cuántico para realizar operaciones de manera mucho más eficiente que los ordenadores actuales, sometidos a la secuencia fija del tiempo ordinario.

https://tendencias21.levante-emv.com/el-tiempo-se-diluye-en-el-universo-cuantico_a45423.html

  

4.
Hallan, durante un experimento, una nueva clase de tiempo cuántico
Un equipo de investigadores mezcla los conceptos de tiempo clásico y tiempo cuántico para alterar el orden en el que se producen dos o más acontecimientos
 
Un equipo de investigadores de la Universidad de Queensland, en Australia, acaba de hacer un descubrimiento excepcional durante uno de sus experimentos. La forma más sencilla de describirlo sería que han encontrado un «nuevo tipo de orden en el tiempo cuántico». El hallazgo, en el que se mezclan la física clásica y la física cuántica, permite alterar el orden temporal lógico de dos o más acontecimientos.
La física Magdalena Zych, que ha dirigido la investigación, afirma que el descubrimiento surgió de un experimento diseñado por su equipo para unir elementos de las dos mayores, aunque contradictorias, teorías de la Física. Los resultados de este singular trabajo se acaban de publicar en Nature Communications.
«Nuestro propósito –asegura la investigadora– era descubrir qué sucede cuando un objeto lo suficientemente masivo como para influir en el flujo del tiempo se coloca en un estado cuántico».
El tiempo en la cuántica y en la relatividad
Conviene aclarar, en este punto, que el concepto del tiempo y su flujo cambia mucho de la física clásica a la mecánica cuántica. Según explican los autores en su artículo, «El tiempo tiene un carácter fundamentalmente diferente en la mecánica cuántica y en la relatividad general. En la teoría cuántica, los eventos se desarrollan en un orden fijo , mientras que en la relatividad general el orden temporal está influenciado por la distribución de la materia. Cuando la materia requiere una descripción cuántica, se espera que el orden temporal se vuelva no clásico, un escenario más allá del alcance de las teorías actuales. Aquí proporcionamos una descripción directa de tal escenario».
La teoría de Einstein, por ejemplo, predice que la presencia de un objeto muy masivo puede ralentizar el tiempo . Y de ahí parte precisamente el experimento de los investigadores.
«Imaginemos dos naves espaciales –explica Zych– a las que se les ordena dispararse mutuamente en un momento específico, al mismo tiempo que tratan de esquivar el ataque de su oponente».
Evidentemente, el primero que efectúe su disparo será el vencedor y destruirá a la otra nave. Pero las cosas no siempre son como parecen.
Ralentizar el tiempo en combate...
«Según la teoría de Einstein –continúa Zych– un enemigo lo suficientemente poderoso podría usar los principios de la relatividad general y colocar un objeto muy masivo, como un planeta, cerca de la nave enemiga para que en ella se ralentice el paso del tiempo. A causa de este lapso temporal, la nave más alejada del objeto masivo disparará antes, y destruirá a su adversario».
Y justo aquí entra la segunda teoría. La mecánica cuántica, en efecto, dice que un objeto puede estar en un estado de «superposición». «Lo cual significa –prosigue la investigadora– que podemos encontrarlo en diferentes estados al mismo tiempo, como sucede con el célebre gato de Schrödinger ». (Ya saben, el gato encerrado en una caja junto a un frasco de veneno y que, según la mecánica cuántica, está en un estado de «vivo/muerto» hasta que abrimos la caja y «materializamos» uno de los dos posibles estados).
O frenar el flujo del tiempo
Pues bien, según Zych, si aplicamos la mecánica cuántica al caso de la batalla espacial, la nave que debería ser destruida a causa de la ralentización del tiempo podría colocar todo el objeto masivo (el planeta entero) en un estado de superposición cuántica, con lo cual interrumpiría de inmediato el flujo del tiempo .
Para Zych, «esta sería una forma totalmente nueva de establecer el orden de los eventos, sin que ninguno de ellos sea primero o segundo. En un estado cuántico genuino, en efecto, ambos serían primero y segundo al mismo tiempo ».
Según explica por su parte Fabio Costa, coautor del estudio, «aunque una superposición de planetas, como se describe en el estudio, puede que nunca sea posible, la tecnología sí que nos permitió simular cómo funcionaría el tiempo en el mundo cuántico, sin usar la gravedad. Incluso si el experimento nunca llegara a hacerse, el estudio resulta relevante para las tecnologías futuras ».
Como ejemplo de esas tecnologías, Costa afirma que «actualmente, estamos trabajando en computadoras cuánticas que, dicho de forma sencilla, podrían saltar efectivamente en el tiempo para realizar sus operaciones de manera mucho más eficiente que los dispositivos que operan siguiendo una secuencia temporal fija, tal y como la conocemos en nuestro mundo "normal"».

https://www.abc.es/ciencia/abci-hallan-durante-experimento-nueva-clase-tiempo-cuantico-201908282004_noticia.html


Dr. Iván Seperiza Pasquali
Quilpué, Chile
Septiembre de 2022
Portal MUNDO MEJOR: http://www.mundomejorchile.com/
Correo electrónico: isp2002@vtr.net